电气自动化与电力系统关系的论文

秘密秘秘秘 分享 时间: 收藏本文

【简介】感谢网友“秘密秘秘秘”参与投稿,下面是小编整理的电气自动化与电力系统关系的论文(共12篇),欢迎大家阅读分享借鉴,希望对大家有所帮助。

篇1:电气自动化与电力系统关系的论文

电气自动化与电力系统关系的论文

1.引言

现代社会是一个快速发展的世界,电力系统的出现在改变人们生活的同时也来了第二次工业革命。信息与技术的高速发展不仅加大了工业对有限资源的需求,人们日益增长的需求与有限的资源之间的矛盾,更加让人们为未来感到担忧。科学家试图寻找到新能源来解决危机,但现阶段更加直接的方法或许就是从发电站着手,想办法让发电站能绿色高效可持续的为人类造福。目前,将电气自动化技术应用于发电站的目的就是想提高效率,并且获取大数据以求更好的改进发电厂系统,增强其运行的安全稳定性以及提高能源转化效率。在国家经济和科技高速发展的阶段,电力系统举足轻重,是国家的基础发展战略的根本组成。随着互联网和人工智能的飞跃式发展,电气自动化技术中也将融入这些元素,使得其在电力系统中的作用更为突出。伴随着经济和信息技术的快速发展,对电力系统的工作效率和运行安全可靠性提出更高的要求。正好电气自动化技术具备自动控制和自动检测的功能,如果将其应用到电力系统中,就能对电力系统进行远程的人为和自动控制,并且同时可以收集大量数据,可以分析电力系统工作的最佳条件,来提高它的工作效率和安全稳定性。电力系统则是相当于发电厂一样的存在,可以将像风能、水能等一次能源通过能量转化为电能,然后在通过变压器、电网等输电设备和手段送到用户。当然实现这个就需要将转化电能、配送电能、变化电能、输送电能等几个环节协调好,才能高效安全的实现电能调度,给用户最好的用电体验[1]。

2.电力系统中电气自动化技术的应用现状分析

我国现在经济和科技实力快速增长,深知电力系统的重要性,对其投入的加大也让电气自动化技术在电力系统中的应用研究取得很大进步和成功。现在首要的任务是“一升一降”,即升发电效率,降运营成本。要完成任务就必须将电气自动化技术和电力系统完美结合。电气自动化技术是一个专业性强并且应用复杂的学科,专业工作人员的培养以及其在各行各业中的应用都有较高的要求。由于电气自动化技术本身的较强专业性,使得其在花费在专项研究工作和技术维护上的费用比较高,与此同时,用于支持电气自动化的网络结构设计也因为客户不同的.需要面临巨大的挑战,不同行业对信息数据传输的高要求也将使得电气自动化技术的后续发展倍感压力。

2.1应用技术成本高

我国现有的技术和管理能力,尚且不能很好的支持电气自动化技术在电力系统中发挥最大化的作用,不仅由于电气自动化技术自身的复杂性,在设计上需要花费较大的金钱和精力,而且将电气自动化技术运用到电力系统中的过程非常繁复,专业性很强,需要专人进行技术维护来保障设备系统的安全稳定运行,这就无形中增加了技术应用的成本[2]。

2.2网络结构设计复杂

将电气自动化技术运用到电力系统中需要进行网络结构设计,然而设计网络结构本就是很艰难的一件事,再加上电气自动化技术这么一个复杂的专业学科,使得在实践过程中需要解决的技术难题很难突破,为了满足客户需求,多样化的系统网络设计才能达到要求,因而技术人员需要想办法协调解决,才能有效提高电力系统的效率[3]。

2.3数据信息传递难度大

随着科技与信息技术的迅猛发展,电气自动化技术在各行各业中都有所渗透,这就对信息数据的传输有很高的要求,电气自动化技术在不同的企业有不同的作用,但对信息的传递都想要高效且安全稳定,但由于技术难题尚未攻克,复杂的网络设计结构使得数据信息传递的难度非常大,增加了行业的生产成本,可能不利于其在企业中的发展。

2.4技术应用不高

就电气自动化技术这个专业学科而言,从事这方面的研究必须是相关的专业人员,而且将其应用到电力系统中还需要培养专业的人员去监测和维护,这就很大程度上限制了电气自动化技术的应用范围,导致其技术应用不高,很难在这方面有持续的进步。

3.电气自动化技术在电力系统中应用关键技术的解决方法

3.1系统智能化控制

将电气自动化技术应用到电力系统中的首要目的就是使电力系统智能化。为了能更好的发挥电气自动化技术的作用,我国为此建造了专门的实验室来研究,发现将电力系统智能化的作用非常明显而且发展潜力也很大,在很大程度上能解决传统的控制网络中一直存在的难题。运用智能化,首先是将电网智能,这样能通过网络信息技术很好的控制整的电网系统,便于对其进行线上监测,在出现故障时发出信号,能及时而高效的进行维修,确保整个网络的稳定运行[2]。

3.2在线检修

随着经济的高速发展,我国的电网覆盖面也越来越广,所以就给检修和维护增加了巨大的工作量,而且对于客户而言,由于定期的检查会存在很多隐患而不能满足他们的需求,特别是对于一切企业而言,不能排除所有危险就等于是巨额损失,况且在发生问题的时候不能及时有效解决,更加影响生产,用户的用电体验就会很差。另一方面,让专人定期维护不仅费用高而且效率低,难以适应当前的行业发展。如果将电气自动化技术运用其中,就能很好的在线上实现对整个网络的监测,及时发现问题解决问题,不仅能避免人力维护的弊端,而且能精确定位,高效检修,提高整个网络运行效率,也更加安全。

3.3引进先进的操作系统

目前,我国在电气自动化技术应用方面的研究还是属于理论阶段,我国目前的研究成果并不能达到现在企业发展的需求,而且也不能最大限度的提高生产效率,所以想将其运用到实际中,就不得不先借鉴国外的经验和引进先进的系统。在借鉴国外经验的同时加快我国的自主研发,提高电气自动化技术的应用水平,扩大使用范围和领域。切切实实的落实到开发高端系统和更合理化的网络结构设计等详细角度。才能根本上解决电气自动化技术在电力系统中应用的诸多问题[1]。

4.结束语

随着我国信息技术和网络技术的飞速发展,极大地刺激了电气自动化技术在电力系统中的广泛应用。需求越大,要求越高,所以为了提高电力系统的运行效率和运行的安全稳定性,电气自动化技术和智能化的改造势在必行。扩大电气自动化技术的使用范围和区域,加快我国的电力系统现代化进程,对我国的城镇基础规划,以及发展战略意义非常重要。只有不断的发展和改进,才能满足当今时代的发展需求,具有可持续发展的可能性。不论是现在国家的政策决定还是相关行业的发展风向,都表明,电力行业的未来在于电气自动化。只有加大该方面的投入,再能制胜未来。

参考文献

[1]周骥.电气自动化技术在生产运行电力系统中的运用[J].中国高新技术企业,(2):56-57.

[2]翟淼松,王红,王越.电气自动化技术在电力系统中的运用[J].电子技术与软件程,2017(2):123.

[3]杜利清,黄彪,方明刚,金文伟.机车制动盘的技术现状及应用分析[J].铁道机辆,(3):34-36+60.

篇2:电力系统电气自动化应用研究论文

电力系统电气自动化应用研究论文

1电气自动化

科学技术的飞快发展为电气自动化的广泛应用奠定了扎实的技术保障,其应用大大推动了该领域的发展进程,自动化研究也得到了越来越多社会人士的关注[1]。从整体层面来说,电气自动化发展呈现蓬勃态势,发展前景良好,在其发展过程中也显现出一定特点,主要如下:1)方便控制。电气自动化的控制管理工序简单,因此,它被大面积应用到电力系统中,且可推动电力市场的发展进程。然而,因现阶段电力市场结构繁琐、体系复杂,这大大制约了电气自动化的应用。针对这一情况,我们应参照电力市场的发展现状,适当改进电气自动化技术,切实提升自身性能。2)信息化水平较高。无论从技术层面还是从应用角度来说,电气自动化设备具有较高的信息化水平。现阶段,电力系统的大部分部门均采用计算机信息技术,这在局部层面将数字自动化编程变成现实,这既能显著提高信息处理效率,还能进一步认识电力系统运行状态。另外,还应注意,在电气设备信息化程度日益增加的同时,还应不断提升软件质量,进而有效融合自动化技术与网络信息技术。3)方便维护。网络技术的蓬勃发展以及应用范围的不断拓展,拉近了自动化技术与现代信息化建设之间的关系,这既提升了运行效率,还加大了控制力度,有利于问题的发展和排除,这显著降低了人力以及物力的投入力度[2]。

2电力系统运行中常用的电气自动化技术

1)智能技术。在电气自动化中加强技术创新,合理引入新技术。例如,引入网络通信技术后,一旦电网出现运行故障,网络可及时发出警示,汇报至电力部门,给出有效的`处理措施。由此可知,智能控制技术在电力系统运行中的应用,可增强可控性以及稳定性。2)集成技术。现阶段,在电力系统运行中,所应用的自动化技术科实现统一管理,而这一目标的实现需要不同类型技术的有机集成。围绕以往的安全维护和管理,实施分开管理模式,指派不同部门负责相应管理工作。自动化技术的应用,增加了电力系统管理的规范性和科学性,经由技术集成,将多个组成部分转变成统一整体,进而增强技术竞争力,全面满足多样化的电力客户需求。因此,集成技术在电力系统的应用,有利于项目实施与检测的实现,提升开机操作中的安全系数,便于维护,缩减运行时间,降低花费成本。3)人工智能技术。在电力系统运行过程中,若想将自动化控制变成现实,应自动诊断运行故障,合理分析,科学规划,而这些操作均依赖工作人员,但人工智能技术的应用,显著提升了系统运行效率。通常电网若出现线路故障,依据原有管理模式,应立即切断关联线路,隔离线路电流,这主要应用在人工检查或者修理的情形中,然而,若应用人工智能技术,可全面消除上述环节,并可尽量缩减影响范围和降低影响程度。4)仿真技术。目前,电气自动化应用范围较广,技术水平较高。因此,在电力系统中一定要实现自动化技术的普遍应用,而这一目标的实现单纯依赖以往的实验数据是不够的,还需要多项操作,实验人员应规范测试新装置,进而实现同步控制。仿真技术作为电气自动化的主要技术之一,它的应用和完善优化了实验环境,强化了仿真建模技术,促进了动态监控技术的投入应用,增加了系统可控性和操作简洁性。作业人员凭借仿真技术,可进行模拟实验,并可有效获得各种数据,通过此实验所获得数据信息与实际值的差距接近。电力研究人员可凭借该项技术进行电力系统故障模拟实验,这不仅能增加实验结果的真实性,还能促进新产品的研制。5)动态安全监测技术。动态安全监测技术在电力系统中的应用可实现实时监控,记录并整理数据信息参数。该自动化技术与其它技术的最大区别便是全程动态监控电力系统运行状况,因此,一旦出现故障,可在第一时间发现,进而在保证电力系统的同时,额外增设动态测量系统,对系统故障进行全程动态监测,最终实现电力系统的安全运行。6)电网技术。伴随着电网技术的不断发展,电网一体化、调度智能化逐渐变成现实,其中电网一体化促进了软件技术的改进与配电模型技术的优化,强化了信息处理性能。另外,电网调度自动化是电力系统的主要内容,自动化技术与网络信息技术密切相关。

3电气自动化的实际应用

1)变电站自动化。变电站作为电力系统的关键设备,一直以来,其自动化应用均是电力系统的主要研究内容。伴随着网络信息技术的蓬勃发展,这在很大程度上加快了变电站自动化进程。变电站自动化不仅将二次设备智能化和数字化变成现实,还可全面管控电力设备。综合来说,变电站可显著提升设备运行效率,并可实现全程监控,这与现代电力生产标准相一致。2)智能电网。在智能电网运行前期,主要通过人工操作来控制配电网,此种控制模式不仅速度缓慢,且一旦出现故障问题,无法在第一时间发现,便错过了最佳处理时间。电气自动化的应用促进了智能电网的实现。在智能电网中,电力自动化技术与现代信息技术的应用,可全程控制电力系统运行的各个程序,推动了智能电网的发展进程,拓展了其应用范围。3)电网调度自动化。现阶段,我国电力调度主要包含五个等级,主要由调度中心负责控制工作,具体是通过计算机网络来完成。电力调度自动化与电力系统自动化紧密相关,电气自动化在实践活动中的应用可统一调度所有电力设备,同时,还能如实记录每一等级电网的实际运行参数,并进行科学分析,这有利于电网的安全运行。

4结语

伴随着社会生产水平的提升以及生活质量的改善,用电需求急剧增加,并对电能提出更加苛刻的要求,使得电力系统运行承受着更加艰巨的任务。而电气自动化的应用可有效监控电力系统,并可及时并迅速处理系统故障,它可切实保障电力系统的安全运行,进而确保电能的持续供应。

篇3:电力系统电气自动化技术综述论文

电力系统电气自动化技术综述论文

1、电力系统电气自动化技术应用方向

1.1应用于仿真系统。仿真系统主要用于对电力系统的模拟实验,主要用来帮助测试新装置的质量与效率。在仿真系统使用电气自动化技术,可以有效的为模拟仿真系统提供大量的实验数据,在多种控制装置中形成相对闭合系统,达到灵活进行输电控制的目标,这对于实现电力系统负荷的监测,实现实时电力系统仿真数据建模,在仿真环境中进行电力系统数据实验,满足电力系统未来发展方面有重要意义,也是电气自动化应用研究的主要发展方向之一。

1.2自动保护技术应用。随着我国数据信息技术的广泛发展,电气自动化技术中有关自动化保护的研究已经取得快速发展,自动保护装置可以适用于各种等级的电站保护,可以在人工智能、网络通信,以及微电子计算机技术的辅助下有效的拓展自动化应用水平,从而在电站设备的自动保护预警方面提高便利性。通过自动化系统的研究,可以提高电力系统的安全水平,使新保护装置有更强智能化特点,能够通过感应设备实现对电力设备自动控制。

1.3人工智能方向的应用。在电力系统中引进基于人工智能的自动化技术,可以有效的在电力系统中自主进行故障检测,可以在电力系统的.运行分析,电力系统的规划设计方面的提供新研究方向。例如,通过人工智能技术可以把模糊逻辑、专家系统与进化理论应用到电力系统设计当中,从而结合电力系统的实际需求,提高电力系统的智能控制水平,开发出新的高效应用软件,在提高电力系统运行效率基础上,提高设备的自动化控制水平。

2、电气自动化技术在电力系统具体应用

2.1在发电厂中的应用。发电厂是电力系统的重要组成部分,发电厂的自动化水平直接决定着发电操作的效率,无论风力发电与火力发电都需要使用自动化控制系统。目前风力发电中应用的自动化技术主要用在控制叶片旋角控制与监控保护控制方面,从而实现风力发电设备自动向风转向,并且对发电设备进行稳定清洁性进行控制。水力发电主自动化技术主要控制水的运动势能,自动化技术主要应用在信息监控、保护系统与发电控制系统方面,具体可以应用在测量机组,电压调节,保证水力正常发电等方面。在火力发电中主要用于煤炭燃料控制,继电保护控制与故障处理方面,还可以运用信息管理,数据监控,以及自动化操作控制等方面。

2.2电网调度的控制。电网调度的控制主要运用自动化技术中的数据分析等方面的功能实现对电网情况的综合判断,从而提出有效的调度依据。(1)通过自动化技术可以对电网运行情况进行实时全面监测,可以直接有效的从宏观角度反映电网运行过程中的问题。(2)可以在电网资源优化配置的过程中,找出最优化的解决问题的办法,力求在降低运行成本的基础上实现电网有效控制。(3)还可以对电网运行的风险进行自动分析与控制,从而达到保证电网运行效率,提高电网管控安全质量的目标。

2.3配电自动化应用。当前配电规模范围仍然较小,使用自动化技术可以适应小规模配电需要设备管理、数据传递等方面的需求,可以通过计算机技术为用户提供高效的服务,从而达到保证电力系统高效可靠运转的目标。目前配电自动化已经与人工智能理论有机联系,实现了在光纤通信支持下的大规模集中控制,这对于通过主站与子站数据有效交换,形成高效配电系统有重要的意义。

2.4变电站中的应用。变电站的应用主要为了提高变电工作质量及效率,着力运用机器自动化操作方式有效代替人工操作,从而实现人工全面监视,保证变电站的运行安全。变电站的自动化技术主要以信息传输与处理技术相关,是在自动控制的基础上实现对变电站的全方位的实时监控。具体以电缆或光纤信号来操作计算机,并且运用全微化的设备实现变电站运行情况的全记录,达到电网调度自动化目标,并且促进电力设备的现代化生产。

3、电力系统电气自动化技术应用要求

3.1基本要求。电力系统的中的自动化技术主要是保证电力系统的稳定运行,实现对电力系统运行状况的预判,达到节约人力与物力成本目标,并且有效避免安全事故的发生。(1)强调对电力系统的有效控制,有效防止安全事故的发生,着力把电力安全事故控制在最小范围,起到有效的消除隐患的作用。(2)电力系统中的电气自动化技术应当应用于不同的设备,着力实现不同系统、不能组织层次间的调节,达到促进电力系统正常运转的目标。(3)电力系统使用过程中要实现对数据信息的全面收集,要做到及时处理,并且保证各个元器件可以稳定高效的工作。

3.2应用原则。电气自动化技术应当本着高效稳定的原则使用,具体来说要保证电气自动化技术增加设备可以融入到整体电网系统,可以提高电气自动化技术的结合性。为了保证安全性,还要保证自动化控制系统具有自动分闸与合闸开关,实现远程遥控操作功能安全性。要在电气自动化技术运行的过程中实现全监控,电气自动化技术的应用还要达到全面控制的目标,着力实现人工控制与计算机控制相结合,全面提高电力系统稳定性。

4、结论

电力系统中的电气自动化要从电网系统的实际需求出发,在降低成本和提高效率的基础上,找出有效的电气自动化控制方式与操作策略,从而电高电气自动化技术的适应性。

参考文献

[1]董娜.电力系统中电气自动化技术的探索[J].能源电力,(08)12-13.

[2]刘四聪.电力系统自动化技术的应用和发展[J].沿海企业与科技,2015.

[3]李爱民.电气自动化的发展趋势以及在电力系统中的应用[J].科技资讯,.

篇4:电力系统电气自动化技术探索论文

近年来,随着我国电力行业的不断改革,逐渐将电子技术和计算机技术引入其中,让电力系统安全性和稳定性得到了更多保障。在电力系统中,电气自动化技术的主要作用如下:

1.1仿真测试。依靠电气自动化技术,相关操作人员可以对电力系统进行一次仿真模拟测试,并通过这一测试过程,对电力设备的运行情况进行全面了解,不但可以获取大量的实时信息,还可以将传统测试方法中的能源浪费问题进行解决,为电力系统运行、电力设备维护等工作提供了有效的数据支撑,从而方便企业制定出合理的下一步生产计划。

1.2故障排查。电力系统包含很多复杂的结构和设备,属于一个庞大而又复杂的系统。在日常运行过程中,容易受到很多因素影响,由此便增加了整个系统的故障隐患,如果电力系统真的出现故障情况,将会对企业造成严重的经济损失,甚至可能导致整个区域陷入停电状态。为此,人们将电气自动化技术引入到电力系统中,为整个系统的正常运行提供良好保障。另外,一旦有故障出现,计算机系统便会在短时间之内找到故障低点并制定出故障解决方案,从而确保电力系统的稳定运行。这种技术方式的加入,为企业带来了巨大的社会利益和经济利益,因此受到了各个相关企业的高度重视。

1.3控制电网。为了维护电力系统的安全运行,设计者们在电力系统中加入了很多电网控制,这些电网控制在很多时候不好得到控制。直到电气自动化技术加入之后,彻底实现了发电厂控制、传输路线控制以及终端设备控制等。例如,在电力系统处于工作状态时,电气自动化技术可以对整个系统的运行状态进行合理监测,确保企业的安全生产。总的来说,我国的电气自动化技术在电力系统中的作用极为明显,相关研究人员需要对其进行深入研究,提高电气自动化技术的重视程度。

篇5:电力系统电气自动化技术探索论文

2.1计算机技术的.应用。互联网技术的迅速发展,对电气自动化技术的影响十分严重,为了更好满足人们对电能的需求,人们将计算机技术与电气自动化技术合为一体,可以进一步推进电气自动化技术的发展速度。另外,二者的相互融合,可以加快电气自动化技术的推广速度和广度,增加该技术的使用和发展效果。截止到目前,我国计算机技术在电力系统中的应用主要体现在以下几个方面中:首先,计算机技术为智能电网技术的正常使用提供基础,智能电网也可以说是电力系统中一个特殊标志,在电力系统供电、输电等环节中均有涉及;其次,在电网调度工作中,计算机技术发挥着重要作用,尤其是对不同级别的电网进行合理控制,促使各个区域中不同的电网设备融合在一起,进行统一供电工作,将电力系统的工作效率有效提升。最后,计算机网络技术在变电站中也得到了广泛使用,促进了变电站数字化和网络化发展,帮助电力系统实现各个环节的信息化建设。

2.2PLC技术的应用。PLC技术属于一种数字式的电子结构,属于电气自动化技术中的一种。该技术的主要工作职能是帮助电力系统中所需要的指令进行编程和记录,实现电力系统灵活性的有效提升。PLC技术在电力系统中的应用主要体现在以下几方面中:首先是顺序控制。一般来说,电力系统中存在很多辅助系统,该系统的工艺流程控制顺序为顺序控制和开关控制。近年来,我国大力提倡节能减排,大部分企业在生产当中均严格执行国家要求,在辅助中加入了PLC技术,实现企业生产效益的有效提升;其次是开关量控制。开关量控制在电力系统控制工作中比较常见,通过利用PLC对信号进行接通或者断开控制,最终实现企业的自动化生产方针,增加生产环节效率。

2.3在电气控制系统中的应用。电气控制系统是电力系统中的重要组成部分之一,简称ECS。ECS通常以分层形式存在于电力系统中,由终端测试保护单元组成的间隔层为主导,在没有特殊命令的情况下,各层结构均会采用电气间隔的方式进行设计,并将所要测试和保护的单元设计在一次设备附近。其次是通信网络层,该层次结构主要由通信管理主机、光缆等设备组成,利用现场总线,可以实现数据汇总的功能。另外,间隔层是整个分层控制的核心,其测控单元的组成以就地安装形式为主,这种形式可以有效降低占地面积,提升空间利用率。与此同时,各层中装置的功能相互独立,这样,会增加电气自动化技术的灵活性和可靠性。通过电气控制系统的作用,可以利用交流采样工作对模拟量进行实时采集,这不仅避免了布设二次电缆,同时增加了系统的抗干扰能力,让采集到的数据变得更为精确。电气监控主站的运行相对独立,可以满足各种形式的送电需求,便于对整个系统开展检测和维修工作。

3总结

综上所述,电气自动化技术在我国电力系统中的作用越来越大,随着社会经济的不断发展以及人们日常需求的不断提升,电气自动化技术在电力系统中的应用也在逐渐接受着考验。因此,相关研究人员需要对电力系统中的电气自动化技术进行进一步研究,以创新发展意识和以往工作经验,为电力系统的稳定运行提供有利基础。

参考文献

[1]何俊佳.论电气自动化控制技术在电力系统中的应用[J].信息通信,(03):289-290.

[2]肖奔.电气自动化控制技术在电力系统中的应用研究[J].科技创新与应用,(11):37-38.

[3]郑坤民.电力系统运行中电气自动化技术的应用策略[J].企业技术开发,2016,35(02):31+33.

篇6:电力系统自动化论文

[论文关键词]电力系统自动化智能技术

[论文摘要]简单回顾模糊控制、神经网络控制、专家系统控制、线性最优控制、综合智能控制等典型智能技术在电力系统自动化中的运用。

电力系统是一个巨维数的典型动态大系统,它具有强非线性、时变性且参数不确切可知,并含有大量未建模动态部分。电力系统地域分布广阔,大部分元件具有延迟、磁滞、饱和等等复杂的物理特性,对这样的系统实现有效控制是极为困难的。另一方面,由于公众对新建高压线路的不满情绪日益增加,线路造价,特别是走廊使用权的费用日益昂贵等客观条件的限制,以及电力网的不断增大,使得人们对电力系统的控制提出了越来越高的要求。正是由于电力系统具有这样的特征,一些先进的控制手段不断地引入电力系统。本文回顾了模糊控制、神经网络控制、专家系统控制、线性最优控制、综合智能控制等五种典型智能技术在电力系统中的运用。

一、模糊控制

模糊方法使控制十分简单而易于掌握,所以在家用电器中也显示出优越性。建立模型来实现控制是现代比较先进的方法,但建立常规的数学模型,有时十分困难,而建立模糊关系模型十分简易,实践证明它有巨大的优越性。模糊控制理论的应用非常广泛。例如我们日常所用的电热炉、电风扇等电器。这里介绍斯洛文尼亚学者用模糊逻辑控制器改进常规恒温器的例子。电热炉一般用恒温器(thermostat)来保持几挡温度,以供烹饪者选用,如60,80,100,140℃。斯洛文尼亚现有的恒温器在100℃以下的灵敏度为±7℃,即控制器对±7℃以内的温度变化不反应;在100℃以上,灵敏度为±15℃。因此在实际应用中,有两个问题:①冷态启动时有一个越过恒温值的跃升现象;②在恒温应用中有围绕恒温摆动振荡的问题。改用模糊控制器后,这些现象基本上都没有了。模糊控制的方法很简单,输入量为温度及温度变化两个语言变量。每个语言的论域用5组语言变量互相跨接来描述。因此输出量可以用一张二维的查询表来表示,即5×5=25条规则,每条规则为一个输出量,即控制量。应用这样一个简单的模糊控制器后,冷态加热时跃升超过恒温值的现象消失了,热态中围绕恒温值的摆动也没有了,还得到了节电的效果。在热态控制保持100℃的情况下,33min内,若用恒温器则耗电0.1530kW・h,若用模糊逻辑控制,则耗电0.1285kW・h,节电约16.3%,是一个不小的数目。在冷态加热情况下,若用恒温器加热,则能很快到达100℃,只耗电0.2144kW・h,若用模糊逻辑控制,达到100℃时需耗电0.2425kW・h。但恒温器振荡稳定到100℃的过程,耗电0.1719kW・h,而模糊逻辑控制略有微小的摆动,达到稳定值只耗电0.083kW・h。总计达100℃恒温的耗电量,恒温器需用0.3863kW・h,模糊逻辑控制需用0.3555kW・h,节电约15.7%。

二、神经网络控制

人工神经网络从1943年出现,经历了六、七十年代的研究低潮发展到现在,在模型结构、学习算法等方面取得了大量的研究成果。神经网络之所以受到人们的普遍关注,是由于它具有本质的非线性特性、并行处理能力、强鲁棒性以及自组织自学习的能力。神经网络是由大量简单的神经元以一定的方式连接而成的。神经网络将大量的信息隐含在其连接权值上,根据一定的学习算法调节权值,使神经网络实现从m维空间到n维空间复杂的非线性映射。目前神经网络理论研究主要集中在神经网络模型及结构的研究、神经网络学习算法的研究、神经网络的硬件实现问题等。

三、专家系统控制

专家系统在电力系统中的应用范围很广,包括对电力系统处于警告状态或紧急状态的辨识,提供紧急处理,系统恢复控制,非常慢的状态转换分析,切负荷,系统规划,电压无功控制,故障点的隔离,配电系统自动化,调度员培训,电力系统的短期负荷预报,静态与动态安全分析,以及先进的人机接口等方面。虽然专家系统在电力系统中得到了广泛的应用,但仍存在一定的局限性,如难以模仿电力专家的创造性;只采用了浅层知识而缺乏功能理解的深层适应;缺乏有效的学习机构,对付新情况的能力有限;知识库的验证困难;对复杂的问题缺少好的分析和组织工具等。因此,在开发专家系统方面应注意专家系统的代价/效益分析方法问题,专家系统软件的有效性和试验问题,知识获取问题,专家系统与其他常规计算工具相结合等问题。

四、线性最优控制

最优控制是现代控制理论的一个重要组成部分,也是将最优化理论用于控制问题的一种体现。线性最优控制是目前诸多现代控制理论中应用最多,最成熟的一个分支。卢强等人提出了利用最优励磁控制手段提高远距离输电线路输电能力和改善动态品质的问题,取得了一系列重要的研究成果。该研究指出了在大型机组方面应直接利用最优励磁控制方式代替古典励磁方式。目前最优励磁控制的控制效果。另外,最优控制理论在水轮发电机制动电阻的最优时间控制方面也获得了成功的应用。电力系统线性最优控制器目前已在电力生产中获得了广泛的应用,发挥着重要的作用。但应当指出,由于这种控制器是针对电力系统的局部线性化模型来设计的,在强非线性的电力系统中对大干扰的控制效果不理想。

五、综合智能系统

综合智能控制一方面包含了智能控制与现代控制方法的结合,如模糊变结构控制,自适应或自组织模糊控制,自适应神经网络控制,神经网络变结构控制等。另一方面包含了各种智能控制方法之间的交叉结合,对电力系统这样一个复杂的大系统来讲,综合智能控制更有巨大的应用潜力。现在,在电力系统中研究得较多的有神经网络与专家系统的结合,专家系统与模糊控制的结合,神经网络与模糊控制的结合,神经网络、模糊控制与自适应控制的结合等方面。神经网络适合于处理非结构化信息,而模糊系统对处理结构化的知识更有效。因此,模糊逻辑和人工神经网络的结合有良好的技术基础。这两种技术从不同角度服务于智能系统,人工神经网络主要应用在低层的计算方法上,模糊逻辑则用以处理非统计性的不确定性问题,是高层次(语义层或语言层)的推理,这两种技术正好起互补作用。神经网络把感知器送来的大量数据进行安排和解释,而模糊逻辑则提供应用和挖掘潜力的框架。因此将二者结合起来的研究成果较多。

除了上述方法,在电力系统中还应用了自适应控制、变结构控制、H∞鲁棒控制、微分几何控制等其它方法。总之,智能技术的广泛运用推动了电力系统的自动化进程。我们相信随着人们对各种智能控制理论研究的进一步深入,它们之间的联系也会更加紧密,相信利用各自优势而组成的综合智能控制系统会对电力系统起到更加重要的作用。

[电力系统自动化论文]

篇7:电力系统对电气自动化的应用论文

摘要:电气自动化技术在电力系统中是一项很重要的内容,使得电力服务日益智能化,也在不断发展的过程中适应了社会对电力供应的安全性、可靠性、经济性以及优质性等不断提高的要求。而相对地,电力系统对电力自动化技术的要求也在日益上升。笔者在本文主要对电力系统中的自动化发展趋势进行分析,并探讨电气自动化技术的有效应用。

【关键词】电气自动化技术;智能化;电力系统;发展

电气自动化技术渗透于电力系统工作过程中的各个环节,改变了电力系统人为操作的电力设备应用局面,实现了智能化发展,还提供了实时仿真的技术支持,使得电力系统在整体运行上的面貌都迎来了质的改变。

篇8:电力系统对电气自动化的应用论文

所谓电气自动化技术,即是采用具备自动化检测、决策控制等功能的相关装置,利用数据传输系统与信号系统对电力系统实施自动监控以及协调控制的科学技术,能够为电力系统的运行提供安全性、稳定性的保障,确保其供电可靠性。电气自动化技术是电力系统智能化方面的一个重要部分,利于更精确地开展电力系统运行设计与故障分析等工作,是一种智能化控制技术。同时,电力自动化技术为同步实验的实现提供了技术支撑,能够实现实时仿真技术为科研团队创造仿真环境,能利用更多电力装置测试,有效促进科研工作开展。

2电力系统自动化发展趋势

在电力系统自动化的发展过程中,其电气自动化控制技术的总发展趋势可以表现在以下几个方面:(1)在控制策略方面,不断朝着“最优化、适应化、智能化、协调化以及区域化”等方向发展。(2)在电气自动化设计分析方面,提出了多机系统模型的处理技术要求。(3)电力系统自动化控制技术理论发展方向不断靠近现代控制理论。(4)电力系统自动化控制技术领域不断涌出更多先进手段,比如微机、远程通信以及电力电子器件等等。而电力系统自动化的整体发展趋势则表现在“开环检测→闭环控制、高电压→低电压、单个元件→部分领域与全系统、单一功能→多功能或一体化”等发展方向,同时,装置性能更加灵活与快速,追求目标也向着最优化与协调化发展。以往旨在提高电力运行的安全性、经济性与工作效率,如今更是朝着管理与服务的自动化进行扩展。

篇9:电力系统对电气自动化的应用论文

3.1计算机技术运用

在电气自动化技术中,计算机技术是非常关键的技术,主要包括电网调动技术和智能电网技术。3.1.1电网调动技术电网调动技术可以实现电力系统的完整信息收集工作,还能对国内各级别电网实施自主调动,使得国家整体电位设备有效结合,是对电力系统工作进行监控的有效技术。在电网中的服务器、显示器、变电站终端设备以及打印设备等都连接在专用广域网内,能够借助计算机技术实施统一调配控制。3.1.2智能电网技术智能电网技术一般包括神经网络控制技术、专家系统控制技术、线性最优控制技术。首先在神经网络控制技术方面,因其具备非线性的性质而实现了网络从m维空间到n维空间的非线性映射,具有较高的复杂性。神经网络控制技术同时具备并行处理的能力以及自学能力,为数据的精准性与可靠性提供了很好的技术保障。其次是专家系统控制技术,可以准确及时地辨认电力系统的紧急状态或者警告,并提供紧急处理措施,隔离故障部位,使得配电系统自动化正常运行。最后,在线性最优控制技术方面,在线性最优理论指导下,借助最优励磁控制手段减少电力系统运行中远距离电力运输发生的损耗,进而实现电力利用的高效化。

3.2PLC控制技术运用

PLC控制技术能够对电力系统指令进行自动编程,自动记录信息与预算,有效地减少电力系统耗能。而具体而言,PLC控制技术的运用主要体现在四个方面:(1)该技术对数据采集、数据分析、数据整合、数据转换以及数据传递等都有较高优势,在一定程度上能够实现一些柔性操作智能化控制。(2)该技术可以控制系统的单独模块相关信息,并对信息总线实现通信连接,进而做到电力系统运行的顺序控制,促进电力系统运行的协调化。(3)该技术能够实现模拟闭环控制功能,对系统各个环路的工作状态进行有效调节。同时,还能进行数字量与模拟量的转换(D/A转换、A/D转换),持续控制系统的压力、温度以及流量。(4)该技术可以实现输入与输出信号的通电,也可以进行断开控制,实现电力系统运行过程的自动化,其中机床电气控制与电梯运行控制也是这一技术的运用结果。

3.3实时仿真系统的.运用

在电力系统中,数字模拟仿真系统得到了很好的推广应用,可以帮助科研人员采用多种电气装置进行实验测试,输出大量可供参考与利用的实验数据。同时,也可以进行有效监控。因此,实时仿真系统在电力系统中的运用,体现在为其创造了优良的实验环境与条件,对整个电气自动化系统的相关技术操作都有很好的促进作用。

3.4其它技术运用

在供电可靠性这一关注点日益敏感的背景下,dfacts技术和facts技术都受到重视,其运用在一定程度上也保障了供电质量及其稳定性。其中,dfacts技术为配电系统中的灵活交流技术,可以实现配电网运行的全过程监控,及时解决供电质量问题。而facts技术是柔性交流输电系统技术,能够在输电系统的某些关键部位应用综合功能或者单独功能的电子装置,实现电抗或者电压这些输电参数的有效控制,保障输电高效性与可靠性。

4结束语

如今计算机、通信与控制等各项技术正在迅猛发展,电力系统也形成了计算机、控制、通信、电力装备与电力电子之间的统一体,所需处理的相关信息量也在不断增加,所需考虑因素日益增多,闭环控制对象也越来越多,可观可测范围也不断扩广。总体而言,电气自动化技术在电力系统领域的发展趋势日益全面化与多样化,并且在未来的发展过程中发挥着越来越重要的作用,电力行业依然要坚持创新拓展不断深入研究与探索,实现可持续发展。

参考文献

[1]张羽,张爽.浅析电气自动化在电力系统中的应用及发展方向[J].电气开关,(02):100-101.

[2]潘建平.电气自动化技术在电力系统中的应用综述[J].企业技术开发,(17):131-132.

[3]李爱民.电气自动化的发展趋势以及在电力系统中的应用[J].科技资讯,(27):131.

篇10:电气自动化论文

1电气自动化应用于火力发电的技术特点

1.1发电效率明显提升

而原有传统的火力发电设备多数都需要较多的人员进行实际操作及控制,工作效率低,而将电气自动化技术应用于火力发电,可以使火力发电实现自动化控制,提高发电效率及电能产昌,更好满足社会需求。

1.2发电成本显著降低

用于火力发电的原材料通常都是煤炭及石油等可燃原料,原有的火力发电技术存在诸多问题,使得原材料的燃烧率不高,不能够充分燃烧而释放出全部的能量,这使得发电效果平平,投入了较多的原料却没有得到预期的电量,也就增加了发电成本。而将电气自动化技术应用到火力发电中,就可以对各种燃烧方法进行自动化控制,从而实现燃料的充分燃烧,使得燃料的浪费率大为降低,也就相应的节约了发电成本。

1.3资源得到最优化配置

在火力发电的过程中,所需要的是所有的资源是否能够全面合理的得以有效的利用,其结果对于电厂的发电效率有着直接的影响,过去较为滞后的发电技术,对于电力设备和原材料以及工作人员都没有进行更好更全面的加以利用,人员和原材料的浪费,设备发生了故障没有得到及时的发现和维护,对于火力发电在一定程度上都造成了损失。然而,自从电气自动化技术实现之后,对于设备运行中出现的障碍,能够得以有效的及早发现,在操作模式方面可以实现人机操作,时期资源在使用的过程中,能够将其最大的可利用价值给予充分发挥。

2火力发电系统应用电气自动化技术的可行性和必要性

电气自动化技术自诞生以来,在各行各业中都取得了十分骄人的应用成绩,其在数据采集及管理、运行控制等多个方面都取得了不错的效果。在火力发电系统中运用了电气自动化技术在对交流电进行采样、测量和监控的同时,还可以在新型计算机技术的协助下与工业输电之间的电网进行创新性和性能性革新。火力发电厂原来使用的火力发电技术中各系统与集散控制系统之间的数据传送量有限,加上工作人员无法周全的观察到所有的参数信息变化,这就导致了整个发电运行系统我们所能掌握的信息量较少,而且也导致了电力操作人员的操作内容不轻松和不能及时的发现运行装置系统中存在的问题,无法把握故障的发生。但是,对于电气自动化系统的火力发电,电力设备的自动化水平显著提高,在建立的火力发电的通信网络上传送的数据信号明显增多数倍。对于电力操作人员来说,很大程度上降低了操作难度和发现设备故障的难度。

3电气自动化在火力发电系统中各方面的应用实例

3.1实现炉机组一体化

在火力发电中运用电气自动化技术,就实现了火力发电厂的机、炉、电运行系统一体化的目标。这样整个系统的数据和运行信息就靠机、电、炉这个一体来监控运行和汇总分析。这样的一体化就更大的实现了火电机组的潜力,并且缩小了控制层的规模,简化了发电系统的监控系统,因此,也更大程度的降低了发电的生产成本。另一方面,炉机组这一统一单元实现了火力发电信息采集的便利化,更能提高火力发电厂的电厂信息管理系统的工作效率,统一了电网的'运行和管理,提高了电网的工作效率,使电网保持在最优化的运行状态。

3.2实现设备的自动化检测

我国火力发电厂传统的系统控制及保护功能等只局限于电力运行系统内,是为了电力运行超过一定限定数值后,便会出现跳闸及报警的现象。但是现代化的电气自动化技术,可以运用计算机技术来进行检测,并实现对整个电力运行系统的有效控制,其不仅可以完成对发电系统的监控及诊断检测工作,同时还能够提前预测出可能发生的安全事故等,不是等到事故真的发生了现进行报警等,这样的工作方式有效的避免了电力安全事故的发生,降低了发电厂的经济损失。

3.3实现了通用网络结构的构建

在电气自动化系统的成功运行中,通用网络结构的构建起着至关重要的作用。通用网络结构实现了办公室自动化到整个系统的电气设备的运转自动化,完成了电厂的管理人员和操作人员对整个电厂设备的实时观测和监督,并且保证了控制系统、管理系统和计算机控制系统。

4结语

综上所述,电子气自动化技术在火力发电中的广泛应用,使得火力发电企业的管理水平及发电技术水平都有所提升,使得火力发电工作具备了更多的自动化特点,系统综合应用计算机等新成果的应用,更是提高了火电厂发电中,各系统的运行、监控、故障管理及诊断等各功能的自动化,并发挥了电气自动化的信息特性及网络特性,使得火力发电工作的信息化建设更加的全面,提高了火力发电的整体工作质量及效率。因此,在日后的火力发电工作中,应提高电气自动化的使用深度及广度,相关的电气自动化技术研发人员,也要积极的将该技术与火力发电相融入,促进两种技术的共同提高及发展。

篇11:电气自动化相关论文

1.电力服务实现智能化

在现代化生活中,电力已经渗透进各行各业,如果电力系统出现问题,很多行业将无法正常进行。由此可见,电力系统的正常运行显得如此重要。作为电力系统智能化的重要构成,电气自动化技术可以让操作人员在高精准度要求下实现系统设计,而且让系统实现自动化地进行自我分析所出现的故障,即系统运行的智能化。这种方式,可以让那个电力系统运行得更为高效准确。电力系统的高度自动化运行,让其服务功能得到了升级,实现了电力服务的智能化。

2.电气自动化技术在电力系统中的有效应用

2.1.本文经过研究分析,总结出现阶段电气自动化技术在电力系统中的应用主要包括以下几方面,下面,我们就来详细了解下。第一,仿真技术。在电力系统运行中,仿真技术是一项非常常用并且实用的技术,对于完善电力系统科学运行可谓是意义重大。仿真技术既可以应用到实验中,也可以应用到实践中,在实验过程中通过应用仿真技术,所得出的实验数据与实际数据非常相近,这样就可以避免重复大量的实际测量、实际运算等工作。同时,仿真技术在故障排除、分析中也得到广泛应用,有效的提高了对电力系统故障分析、排除工作的效率。

2.2.其次,就是智能技术。智能技术是电气自动化技术重要的表现形式之一,智能技术在电力系统中的应用可谓是发展迅速,并且发展空间非常巨大。在智能化系统的`支持下,可以迅速发现电力系统运行中发生故障的所在之处,并且可以在最短时间内反馈给工作人员,提高了电力系统运行的灵敏度,有效降低了单位时间内的停电次数,提高了电力系统的运行效率。

2.3.实时动态监控技术。该技术也是电气自动化技术表现的一种形式,电力系统通过该技术的应用,可以对电力系统运行的各部分动态进行实时监控,并且可以对运行数据进行记录,并能及时反馈到操作室,对于预防电力系统运行事故的发展意义重大,提高了电力系统运行的安全性、可靠性。

2.4.柔性交流电系统技术。该技术是一种较为先进的处理技术,在电力系统运行过程中,该技术可以针对某些环节进行综合功能以及独立功能方面的处理,调控电力系统的关键性参数,该技术所涉及的技术是很多的,最为核心的技术就是ASVC。该技术的优势就是调节的速度非常之快,可调节的范围也很大。所以,该技术在使用过程中,基本上没有噪音,也没有延迟,工作效率高,控制能力强。

3.电气自动化在电力系统中的应用趋势

自动化的发展则趋向于:第一,由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。第二,由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。第三,由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。第四,由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。第五,装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。第六,追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。第七,由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如管理信息系统在电力系统中的应用。

4.结语:

综上所述,电力能力是当今世界发展应用最为广泛的能源之一,而电子自动化技术也是当今世界发最活跃、最充满生机且发展潜力巨大的技术之一,所以不断研究电气自动化技术在电力系统运行中的应用以及发展趋势对于我国经济社会的可持续发展意义重大,以上就是本文所研究的主要内容,希望可以给广大同行业者带来帮助和提供借鉴。

篇12:电气自动化论文

电气自动化论文例文

电气工程及其自动化专业是电气信息领域的一门新兴学科,广泛应用于工业、农业、国防等领域,在国民经济中发挥着越来越重要的作用。为大家分享了电气自动化论文,欢迎借鉴!

摘要:我国社会经济发展进入快车道,现代科学技术也进入了一个崭新的时代,作为高科技的产物,电气自动化如何在新形势下应对挑战,抓住机遇,提高工作效率和工作质量,使其能直接转变成生产力,为社会发展做出应有的贡献,是每一个电气人都必须面对的问题。电气自动化在今后的电气工程中的融合运用越来越多。本文就是研究分析电气及其自动化在电气工程的有效应用,为电气工程系统更加稳定、安全运行提供科学有效的建议.

关键词:电气自动化;电气工程;运用;创新

1电气自动化在电气工程的应用前景

科学的发展,技术的革新,推动了电气及其自动化的发展和应用,给我们的生活、生产提供了极大便利。像我们现在出门乘坐的轻轨、地铁等交通工具已大都是电气控制,住房建筑中的电力、排水、消防也都是智能控制,农业生产中的大棚技术和无土栽培等也都通过电气自动化来实现实时监控,而工业生产的各个领域也大多是电气自动化。可以说,电气自动化已无处不在,成了我们生活生产不可或缺的一部分。由于电力系统的自动化是通过调控完成的,其完成离不开信息化的支持,所以只有充分发挥计算机的辅助功能才能使电气自动化更好的发展。无论是生产还是生活,只有通过高效的数据收集处理才能保证其稳定运行。另外,电气自动化结构的多元化使其运行中会存在很多安全隐患,要想降低风险,就必须采取相应的安全措施,引入科学科学的安全方案,从而降低电气自动化运行中非安全领域的成本投入。

2电气自动化在电气工程中的模式类型及比较

2.1电气自动化在电气工程中的模式

根据监控的地带和范围,其模式可分为远程控制、现场总线监控和集中监控三种。远程监控利用电脑终端远距离完成整个电气工程中所有设备的控制;现场总线监控采用通讯网络的方式相互连接、根据电气工程中实际间隔的情况、对系统中所有设备进行现场监控;集中监控是将系统的所有功能集合在一个处理器中利用控制软件来监控整个电力工程的设备。

2.2电气自动化在电气工程中的模式类型比较

相同点:由于融合了网络通讯技术,是电气自动化在电气工程中发展运用,所以无论是远程控制、现场总线监控,还是集中监控。都实现了减少费用支出,节约工程成本,提高电气工程工作效率的技术革新目标。不同点可以从控制地带和安全性能方面进行比较。从控制地带来看,由于通讯技术和设备的制约,远程监控只适用于通讯信号好的小规模电气电厂。现场监控技术吸收了远程监控技术的长处,但是电气自动化的设备是就地安装,可以实现现场实地监控,又由于所有设备是按照通讯网络的方式根据电气工程中的实际间隔进行设计,所有使现场监控既相对独立,又方便灵活。也正是因为这种设计,现场总线监控在一个设备出现故障时,可以单独处理而不必全线关停,很好的保证了电气工程的稳定安全。所以在电气工程中,现场总线监控是最受欢迎的一项监控技术。当然,由于集中监控技术设计简易、维护方便、防护要求不高,且解决了因连接线连接密度相对较弱、质地相对较硬引发的连接失灵问题,保证了电气设备长时间运行,所以集中监控技术也会得到广泛的应用。

3电气自动化在电气工程中的应用与创新

3.1电气自动化在电气工程中的应用

电气自动化中融合了网络信息技术,不仅降低了工程成本,增加了经济效益,而且方便于对流量采集、压力、温度对数据进行有效收集和处理,在减少电气工程中检测误差,避免数据错误,遏制敷衍、造假等工程失责情况的发生起到了很好的遏制作用。其应用主要表现在:

3.1.1电网调度的自动化

电网调度的自动化是电气自动化的在电气工程中能够有效应用的关键,它不仅有技术层面的要求,能够利用电脑网络调度服务软件,通过电脑终端和局域网之间的高效对接,合理评价收集到的流量、压力、温度等数据信息,从而实现调度和控制之间自动化的完美融合,而且有管理层面的要求,需要专业人员能够从认识态度上真正做到配合,才能更好的做到电气自动化在电气工程中的应用。

3.1.2电力系统的自动化

电气自动化技术可有效提高电源系统的监控管理水平。特别是现场实时监控系统的应用,可以随时查阅模拟设备的.运行状态、电力台帐总表、电度量的实时值、峰峰电度量、上次检修时间、事故发生的时间及故障点、计划检修时间等。智能化报警和控制的在实时监控软件中的应用,实现分类报警的需求,并可以对电力系统的运行故障进行实时反馈和及时处理,提高了电力系统的运行可靠性。同时系统中应用仿真技术,在实时监控软件将变电所的10KV系统和低压系统进行界面切换,为监控中心提供精确的电气设备运行状态、电气故障的报警和初步的诊断、对整个电源监控系统进行动态的监控、优化、设计和调试。

3.1.3变电所的自动化

主要应用的自动化设备是全微机化设备,该设备使得计算机的屏幕化得到有效的监护,并能进行实时精确的记录和运行管理。集成化管理对不同变电所实现了集中化的管理,能够使得减少人工的操作,避免人工操作中出现的问题和误差,保障每个设备的运行质量,让电力安全管理和维护的效率得到了更好的提高。

3.2电气自动化在电气工程中应用中的创新

首先电气自动化要想在电气工程中更好的发挥作用,就应该实现电气全通信控制,要实现电气全通信控制,就要解决热工工艺的连锁问题,进而提升和完善控制系统的监控功能。其次要搭建稳定合理的电气自动化网络结构,有效完成对电气设备参数的监控。再次是与时俱进,不断吸收融合计算机和网络信息技术的新成果,使现场总线监控得以更好的发挥作用,最大化的保证电气自动化在电气工程中的正常运行。

参考文献

[1]邹恒.电气自动化在电气工程中的融合运用[J/OL].科技展望,2017(24):121.

[2]马立金.浅析电气自动化在电气工程中的应用[J].电子制作,2017(10).

[3]王善彪,林宏英,佘庆军.电气自动化在电气工程中的应用研究[J].江西建材,2017(07).

[4]李超,王振贤.电气自动化在电气工程中的融合运用[J].科技创新与应用,2017(09).

[5]方玉龙.电气自动化在电气工程中的应用研究[J].现代工业经济和信息化,2017,7(03).

相关专题 电力系统关系