特殊部位基坑支护加固工程的控制工学论文

女人心 分享 时间: 收藏本文

【简介】感谢网友“女人心”参与投稿,下面是小编为大家整理的特殊部位基坑支护加固工程的控制工学论文(共6篇),仅供参考,大家一起来看看吧。

篇1:特殊部位基坑支护加固工程的控制工学论文

特殊部位基坑支护加固工程的控制工学论文

摘要:由于国家城市人口不断增加,城市土地成为稀缺资源,工程建设向空中、地下发展成为一种必然。

关键词:基坑支护;钢塔加固;变形监测

1工程概况

施工区域临近主楼18层主体施工已完成,主楼东侧有7.5米双向地库汽车坡道出入口;由于前期施工场地相当狭窄,开挖对东侧高压电线钢塔安全影响未知、且加固方案未定等问题的限制,该部分坡道以及部分地库长度32米未进行开挖;由于主楼开挖对该部分地质情况十分熟悉,从上到下依次,现场表层1.5-2.0米为垃圾回填土,1.5米厚粉土层,0.5米粘土层,以下为粉土层,在车库出入口东侧为高压入地电缆盘曲部分,电缆盘曲向西3.0米向东连接22米、25米2座高压钢塔;地库及坡道开挖深度在1-6米,钢塔处开挖深度4米左右;坡道底部为地库,该部分深度6米;在开挖4-6米范围东侧为已建成小区道路、地库出入口,该路面标高低于本工程开挖面1.2米,道路下走有电缆、排水管;且开挖面紧邻隔壁围墙,由于该部位特殊、地质且不均匀,土层有夹杂粘土层,遇水容易滑坡,为保证基坑安全以及隔壁围墙、道路安全,主楼开挖时在围墙内侧采用微型桩加钢筋网砼支护形式,但不理想,围墙局部出现较大裂缝,隔壁道路出现轻微变形;对于现在坡道施工,为保证开挖临边高压钢塔、基坑、以及道路安全,对施工方案进行了多次讨论、对比;在钢塔附近埋有110千伏高压电缆,该部位采用土钉支护安全隐患太大,且放坡使基坑外沿向钢塔、电缆靠近,对钢塔结构安全有影响;钢塔南侧基坑开挖如果采用素喷砼,放坡按照1:0.4放坡,现场尺寸无法满足;用土钉墙支护形式,土钉的长度会伸入临近道路排水管、电缆区域,安全隐患较大,无法保证施工安全;经过对钢塔结构现状了解,钢塔基础为独立钢筋砼灌注桩,直径2.2米,埋深9米。

2工程施工方案的选择、分析

通过采用土钉支护或采用13米400微型桩加钢筋网的支护方案的对比,由于钢塔顶部钢绞线相拉,钢塔基础受力大小无法预计,仅靠基坑土体受力计算显然不符合实际,在结构安全和施工安全方面都没有把握,由于该部位较为特殊,一旦影响电线高塔的安全对社会影响较大,施工工艺选择不妥会造成施工安全事故;经多方面考虑、推敲和借鉴其他类似项目,在保证不影响高塔使用安全和坡道施工安全的前提下,设计安全系数适当提高;根据JGJ120-99和GB50202-的`相关规定,基坑侧壁钢塔处安全等级1级,其他部位为3级;设计类型采用悬臂桩结构,用北京理正软件对支护结构抗拉、内部稳定、外部稳定性进行设计,安全系数均满足规范要求;并通过结构、岩土、电力等方面的专家对该施工方案的论证。

3方案主要内容

3.1采用直径600mm的钻孔灌注桩,桩入土深度自地表以下12米,有效桩长11米,嵌固深度6.5-9.5米,桩身采用C30砼,主筋10根HRB400级16钢筋均匀分布,箍筋¢8@150,加强箍筋¢14@,桩间距在电线杆处为1.0米,其它地段为1.2米;冠梁500*800,10根HRB400级18,箍筋、拉钩¢8@200,采用C30砼。

3.2坡道边坡、钢塔变形监测。

4现场施工组织安排

由于现场狭窄,大型机械无法进入施工,且施工区域地下、地上均有高压电缆;对砼灌注桩成孔、钢筋笼安装、砼浇注较为困难;经多方面考虑、讨论决定按照以下组织实施:

①在施工前详细了解高压地下电缆走向、埋深以及接电线的辐射范围;

②砼灌注桩放线:为了尽最大可能远离高压地下电缆,桩位紧靠车库剪力墙外皮;

③由于打桩位置狭小无法使用大型机械进行砼桩施工,采用人工机械洛阳铲成孔工艺,机械选用1T卷扬机配三木塔、活底吊桶、双轮手推车等。

④钢筋笼加工:由于钢筋笼11米,钢筋长度9米,需接长2米,计划采用双面焊接工艺,用25吨吊车在地库顶安装,但最北侧4-5根钢筋笼受1#楼主楼位置影响,无法使用吊车,该部位钢筋主筋连接采用直螺纹一级连接,接头钢筋在场外加工后进场;

⑤砼浇注:为保证基坑、钢塔安全,砼浇注桩成孔采用隔二打一,每三根桩浇注砼一次;

⑥变形监测:委托有测量资质的单位进行变形监测,砼灌注桩强度满足设计强度后,组织土方开挖,土方开挖后一周内每天观测1次,以后每三天观测1次。

5主要施工工艺和质量控制措施

5.1灌注桩放线定位:利用原1#楼主体定位,定出灌注桩中心位置,桩外侧与坡道剪力墙只留30mm空隙。

5.2机械洛阳铲成孔:

5.2.1采用600mm机械洛阳铲在在桩位中心,利用卷扬机提升及下落进行挖土和垂直运输,闭合抓土,至地面卸土,依次循环成孔,直至达到设计标高。

5.2.2灌注桩施工部位为前期基坑开挖土钉支护面,在自然地坪以下1.5米和3.0米处有土钉,影响到洛阳铲的施工;有土钉的部位桩径均扩大到700mm,用电焊切除;

5.3钢筋笼制作安装:

5.3.1钢筋原材经现场见证取样试验合格后,方准予加工;

5.3.2钢筋受力筋按照50mm保护层下料,钢筋主筋搭接采用双面电弧搭接焊,焊头错开50%;个别桩钢筋笼接头采用一级直螺纹连接,接头可在同一个平面上;

5.3.3钢筋保护层用50砂浆垫块每组4块水平对称排列与主筋固定牢固,间距1000mm; 5.3.4钢筋笼吊装:用25T吊车吊装钢筋笼;吊装钢筋笼时要对准孔位,直吊扶稳,缓慢下沉,避免碰撞孔壁,钢筋笼放到位置立即固定;吊车不能直接吊装的钢筋笼,分两段钢筋笼施工,第一段5米,加强箍筋采用¢14@1500,成型后人工放入桩孔,临时固定后,用一级直螺纹机械连接其余主筋钢筋。

5.4砼施工。

砼采用10-20mm粒径、砼塌落度80-100mm商品砼,灌注前再次校核钢筋笼标高、孔深,检查有无坍孔现象,符合要求后即可开盘灌注。由于砼灌注桩深度较深,混凝土采用溜管用手推车向桩孔内浇筑。灌注开始后应紧凑连续地进行,严禁中途停灌,桩顶以下6米范围采用插入式振动棒进行振捣密实。

5.5质量标准。

根据机械洛阳铲砼灌注桩施工验收标准,设计文件和建筑地基基础工程施工质量验收规范GB50202-2002以及砼结构工程施工质量验收规范GB50204-2002相关规定。

5.5.1机械洛阳铲成孔检验标准及检验办法:桩位小于10mm,孔深+300mm,垂直度10mm;

5.5.2钢筋笼安装质量检验标准及检验办法:钢筋笼主筋间距±10mm,钢筋笼箍筋间距±20mm,钢筋笼直径±10mm,钢筋笼长度±100m,用尺量;

5.5.3砼灌注桩质量检验标准及检验办法:桩体质量检验:无桩身断裂、裂缝、缩径、加泥、空洞、蜂窝、松散;砼强度:大于30MPa;桩径:-20mm;桩顶标高:+30mm,-50mm;沉渣厚度:小于100mm。

6变形监测

6.1变形观测点的设置。

6.1.1在基坑边沿设置4个沉降观测点C1、C2、C3、C4,3个位移观测点w1、w2、w3;

6.1.2在高压钢塔上东西各设2个位移观测点南塔w4、w5;北塔w6、w7。

6.2变形监测仪器。

沉降观测采用DS1型仪器,按照二等水准测量,水平位移变形观测采用全站仪测量。

6.3变形测量控制。

水平位移观测为平面控制测量,必须先在测区内建立平面控制网。水平位移监测网根据实际情况,采用如下方法:

先在场内选好位移观测点两端的固定观测点,BM1、BM2,埋在场内稳定不动的位置,并经常检查有无移动,并有保护措施;将在边坡处位移变形点w1、w2、w3设在的冠梁上为一条直线,并做好标记。高压钢塔水平位移点南塔设w4、w5;北塔设w6、w7观测点。观测时,在一个端点BM1上安置全站仪,在另一个端点BM2设置固定觇牌,并在每一个位移点上安置固定标志,全站仪先后视固定觇牌进行定向,然后再观测冠梁、钢塔上的观测点,并读取数据,经计算即可得到各点位移量。测量中的主要误差:对中误差<0.1mm;整平误差:<0.3mm;瞄准误差:<0.4mm;方法误差:<0.3mm;

6.4监测成果。

从土方开挖到观测变形结束,除开挖当天1个观测点变形最大3mm,(报警值为5毫米/天),其余变形观测为1-2毫米/天,累计最大6mm,远远满足规范30mm要求;对临近建筑、道路沉降观测未发现明显变形。

篇2:建筑施工过程中基坑支护与加固工程的控制论文

我国经济飞速发展,国家城市人口不断增加,城市土地成为稀缺资源,工程建设向空中、地下发展成为一种必然。因此,建筑施工过程中基坑支护与加固工程的控制非常重要。

一、工程概况

施工区域临近主楼18层主体施工已完成,主楼东侧有7.5米双向地库汽车坡道出入口;由于前期施工场地相当狭窄,开挖对东侧高压电线钢塔安全影响未知、且加固方案未定等问题的限制,该部分坡道以及部分地库长度32米未进行开挖;由于主楼开挖对该部分地质情况十分熟悉,从上到下依次,现场表层1.5-2.0米为垃圾回填土,1.5米厚粉土层,0.5米粘土层,以下为粉土层,在车库出入口东侧为高压入地电缆盘曲部分,电缆盘曲向西3.0米向东连接22米、25米2座高压钢塔;地库及坡道开挖深度在1-6米,钢塔处开挖深度4米左右;坡道底部为地库,该部分深度6米;在开挖4-6米范围东侧为已建成小区道路、地库出入口,该路面标高低于本工程开挖面1.2米,道路下走有电缆、排水管;且开挖面紧邻隔壁围墙,由于该部位特殊、地质且不均匀,土层有夹杂粘土层,遇水容易滑坡,为保证基坑安全以及隔壁围墙、道路安全,主楼开挖时在围墙内侧采用微型桩加钢筋网砼支护形式,但不理想,围墙局部出现较大裂缝,隔壁道路出现轻微变形;对于现在坡道施工,为保证开挖临边高压钢塔、基坑、以及道路安全,对施工方案进行了多次讨论、对比;在钢塔附近埋有110千伏高压电缆,该部位采用土钉支护安全隐患太大,且放坡使基坑外沿向钢塔、电缆靠近,对钢塔结构安全有影响;钢塔南侧基坑开挖如果采用素喷砼,放坡按照1:0.4放坡,现场尺寸无法满足;用土钉墙支护形式,土钉的长度会伸入临近道路排水管、电缆区域,安全隐患较大,无法保证施工安全;经过对钢塔结构现状了解,钢塔基础为独立钢筋砼灌注桩,直径2.2米,埋深9米。

二、工程施工方案的选择、分析

通过采用土钉支护或采用13米400微型桩加钢筋网的支护方案的对比,由于钢塔顶部钢绞线相拉,钢塔基础受力大小无法预计,仅靠基坑土体受力计算显然不符合实际,在结构安全和施工安全方面都没有把握,由于该部位较为特殊,一旦影响电线高塔的安全对社会影响较大,施工工艺选择不妥会造成施工安全事故;经多方面考虑、推敲和借鉴其他类似项目,在保证不影响高塔使用安全和坡道施工安全的前提下,设计安全系数适当提高;根据JGJ120-99和GB50202-2002的相关规定,基坑侧壁钢塔处安全等级1级,其他部位为3级;设计类型采用悬臂桩结构,用北京理正软件对支护结构抗拉、内部稳定、外部稳定性进行设计,安全系数均满足规范要求;并通过结构、岩土、电力等方面的专家对该施工方案的.论证。

三、方案主要内容

1.采用直径600mm的钻孔灌注桩,桩入土深度自地表以下12米,有效桩长11米,嵌固深度6.5-9.5米,桩身采用C30砼,主筋10根HRB400级16钢筋均匀分布,箍筋¢8@150,加强箍筋¢14@2000,桩间距在电线杆处为1.0米,其它地段为1.2米;冠梁500*800,10根HRB400级18,箍筋、拉钩¢8@200,采用C30砼。

2.坡道边坡、钢塔变形监测。

四、现场施工组织安排

由于现场狭窄,大型机械无法进入施工,且施工区域地下、地上均有高压电缆;对砼灌注桩成孔、钢筋笼安装、砼浇注较为困难;经多方面考虑、讨论决定按照以下组织实施:

①在施工前详细了解高压地下电缆走向、埋深以及接电线的辐射范围;

②砼灌注桩放线:为了尽最大可能远离高压地下电缆,桩位紧靠车库剪力墙外皮;

③由于打桩位置狭小无法使用大型机械进行砼桩施工,采用人工机械洛阳铲成孔工艺,机械选用1T卷扬机配三木塔、活底吊桶、双轮手推车等。

④钢筋笼加工:由于钢筋笼11米,钢筋长度9米,需接长2米,计划采用双面焊接工艺,用25吨吊车在地库顶安装,但最北侧4-5根钢筋笼受1#楼主楼位置影响,无法使用吊车,该部位钢筋主筋连接采用直螺纹一级连接,接头钢筋在场外加工后进场;

⑤砼浇注:为保证基坑、钢塔安全,砼浇注桩成孔采用隔二打一,每三根桩浇注砼一次;

⑥变形监测:委托有测量资质的单位进行变形监测,砼灌注桩强度满足设计强度后,组织土方开挖,土方开挖后一周内每天观测1次,以后每三天观测1次。

五、主要施工工艺和质量控制措施

(一)灌注桩放线定位:利用原1#楼主体定位,定出灌注桩中心位置,桩外侧与坡道剪力墙只留30mm空隙。 (二)机械洛阳铲成孔:

1.采用600mm机械洛阳铲在在桩位中心,利用卷扬机提升及下落进行挖土和垂直运输,闭合抓土,至地面卸土,依次循环成孔,直至达到设计标高。

2.灌注桩施工部位为前期基坑开挖土钉支护面,在自然地坪以下1.5米和3.0米处有土钉,影响到洛阳铲的施工;有土钉的部位桩径均扩大到700mm,用电焊切除;

(三)钢筋笼制作安装:

1.钢筋原材经现场见证取样试验合格后,方准予加工;

2.钢筋受力筋按照50mm保护层下料,钢筋主筋搭接采用双面电弧搭接焊,焊头错开50%;个别桩钢筋笼接头采用一级直螺纹连接,接头可在同一个平面上;

3.钢筋保护层用50砂浆垫块每组4块水平对称排列与主筋固定牢固,间距1000mm;

4.钢筋笼吊装:用25T吊车吊装钢筋笼;吊装钢筋笼时要对准孔位,直吊扶稳,缓慢下沉,避免碰撞孔壁,钢筋笼放到位置立即固定;吊车不能直接吊装的钢筋笼,分两段钢筋笼施工,第一段5米,加强箍筋采用¢14@1500,成型后人工放入桩孔,临时固定后,用一级直螺纹机械连接其余主筋钢筋。

(四)砼施工

砼采用10-20mm粒径、砼塌落度80-100mm商品砼,灌注前再次校核钢筋笼标高、孔深,检查有无坍孔现象,符合要求后即可开盘灌注。由于砼灌注桩深度较深,混凝土采用溜管用手推车向桩孔内浇筑。灌注开始后应紧凑连续地进行,严禁中途停灌,桩顶以下6米范围采用插入式振动棒进行振捣密实。

(五)质量标准

根据机械洛阳铲砼灌注桩施工验收标准,设计文件和建筑地基基础工程施工质量验收规范GB50202-2002以及砼结构工程施工质量验收规范GB50204-2002相关规定。

1.机械洛阳铲成孔检验标准及检验办法:桩位小于10mm,孔深+300mm,垂直度10mm;

2.钢筋笼安装质量检验标准及检验办法:钢筋笼主筋间距±10mm,钢筋笼箍筋间距±20mm,钢筋笼直径±10mm,钢筋笼长度±100m,用尺量;

3.砼灌注桩质量检验标准及检验办法:桩体质量检验:无桩身断裂、裂缝、缩径、加泥、空洞、蜂窝、松散;砼强度:大于30MPa;桩径:-20mm;桩顶标高:+30mm,-50mm;沉渣厚度:小于100mm。

从土方开挖到观测变形结束,除开挖当天1个观测点变形最大3mm,(报警值为5毫米/天),其余变形观测为1-2毫米/天,累计最大6mm,远远满足规范30mm要求;对临近建筑、道路沉降观测未发现明显变形。

篇3:基坑围护工程支护实例分析工学论文

基坑围护工程支护实例分析工学论文

摘 要:采用钻孔桩及高压旋喷桩相结合的边坡支护方法,是保护基坑周边已有建筑物安全的一种重要手段。结合施工实践,论述了钻孔桩――旋喷桩在支护施工中技术工艺等问题。

关键词:钻孔桩;旋喷桩;基坑支护

1 工程概况

北京东城朝内危房改造小区6组团606楼,高38m,地下一层,基坑深6m。基坑南侧紧邻的(原服务公司幼儿园)4-6层楼的'基础类型为条形基础,基础下有1.5m厚的级配砂石,级配砂石垫层底标高为现状地表以下约2.0m。拟建场区地下水为潜水,地下水位较高,年平均水位埋深0.5―1.0m,根据目前基坑内的地质情况,地下外来水量较大,且外来水源不明。

2 现状分析

606楼基坑开挖距服务公司幼儿园仅300m,给南侧基坑及其围护工程施工带来很大困难,这是常规基坑围护工程施工中未曾遇到的难题。而且降水时对南侧相邻4-6层楼影响会很大,故该基坑南侧须采取止水措施,以确保已有建筑物安全。

3 支护方案

(1)根据杂填土、素填土埋深大(最大埋深为2.0m),碎砾、块石含量高、体积大、透水性强,基坑开挖深度6.00m等情况,以Ф600mm钻孔灌注桩与高压旋喷桩相结合的支护方案。

(2)以粉质粘土层(该层缺失时以其下的淤泥质粘土层)作围护钻孔桩的持力层,桩长12.00m,钢筋笼主筋配制14Ф20通长,加强箍14@。

(3)根据地层条件,基坑挡土墙后止水帷幕不宜采用水泥搅拌桩、钢筋网喷锚等止水工艺,而采取在围护挡土钻孔桩间打入高压旋喷桩(桩长7.5m),使两者咬合10―15cm。

(4)原楼外墙与基坑之间没有充足的围护结构设置空间,加之此处外墙基础为浅层条形基础。因此只能采用高压旋喷桩止水帷幕和工程桩相结合的围护体系。

4 施工要点

(1)灌注桩施工。

沿钻孔中心线挖一条沟槽深1.2m,开孔前预埋直径1.0m、长2.0m的护筒并固结牢靠。采用直径0.6m钻头,泥浆护壁钻进。钢筋笼一般为一节,钢筋笼的竖筋必须露出桩顶0.4―0.5m,以便与地梁的钢筋焊接。

砼强度为C25,每立方米砼配比为:PO32.5普通硅酸盐水泥413kg,砂子727kg,碎石1316kg。

(2)高压旋喷桩施工。

在相邻的两根灌注桩的中间施工高压旋喷桩。灌注桩中心距为1.4m,两桩空隙为0.8m,因此旋喷桩的直径必须大于1.0m,以便施工旋喷桩可以部分包住灌注桩形成护坡挡土墙。

旋喷注浆技术参数如表1所示。

(3)注浆施工。

为保证旋喷桩体强度,在旋喷完成后进行补强注浆。

即在旋喷桩的中心钻孔,采用分段下行式注浆方式,注浆段为1~7.5m,并用止浆栓塞封闭孔段。浆液类型为C-S双液浆。注浆参数为:最高压力0.5―10Mpa,注浆量30―50L/min。当浆液浓度为1:1时,注浆后稳定20min即可结束该孔该段的注浆。

(4)坑内降水。

采用井点降水系统进行坑内降水,井点按250m2/个布置,降水深度控制在基坑最终开挖面下0.5―1.0m。

(5)基坑开挖至2m时,做一道锚杆,锚杆采用48钢筋,间距1.4rm,长为12m。击入锚杆后,进行压力注浆。

5 质量检查

5.1 钻孔灌注桩检测

采用地震测波反射法对12根桩进行现场测试,测试结果表明:桩身完整性优良占100%;未发现断桩离析等施工事故;桩身承载力为3117.1―4788.2kN;砼强度16.7―25.7Mpa。

5.2 旋喷桩检测

应用MC-160地震仪,采用锤击反射法对10根桩进行现场检测,检测结果:未发现断桩现象;由于养护期较短,且冬季气温较低,桩的砼强度在C10―C15之间随着砼养护期的增加,强度将会继续增加。

5.3 支护效果检查

(1)工程结束1个月后,对现场两处进行开挖验证,挖深6m。结果显示灌注桩与旋喷桩连成一体,形成有效支护止水体系。

(2)经甲方监测站半年多监测数据资料表明:地基沉降与加固前相比,沉降量大大降低。灌注桩-旋喷桩结合使用达到了预期加固效果。

6 结论

采用钻孔灌注桩、高压旋喷桩及相应配套技术,是基坑支护重要手段,具有施工简便,速度快,质量好,造价低等特点。

围护钻孔桩与高压旋喷桩形较好,两者咬合符合设计要求,没有发现基坑渗漏水现象。

基坑挡土支护及基坑支护设计合理、经济,施工质量良好,在基坑开挖及地下室施工全过程中,基坑最大位移仅1.2cm,幼儿园未见任何因基坑施工而引起的变形或开裂。

篇4:浅谈建筑工程基坑支护的质量控制论文

浅谈建筑工程基坑支护的质量控制论文

【摘要】深基坑支护工程虽属临时性工程,但其施工方案的可靠性及施工质量将直接影响地下室主体施工的结构和作业工人人生安全,且其施工的技术复杂性,有的却远甚于永久性的基础结构或上部结构,稍有不慎,不仅将危及基坑本身安全,还会殃及临近的构筑物和各种地下设施,造成巨大损失。本文分析了当前深基坑支护存在的安全问题,提出了深基坑支护设计施工中的注意事项和预防措施。

【关键词】建筑基坑;施工;支护;处理方法

1 前言

近几年来,高层建筑的迅速兴起,促进了深基坑支护技术的发展。各地在深基坑开挖和支护技术方面积累了丰富的设计和施工经验,新技术、新结构、新工艺不断涌现。但是,现在的城市建筑间距很小,有的基坑边缘距已有建筑仅十几米、甚至几米,给基础工程施工带来很大的难度,给周围环境带来极大威胁,也相应地增加了施工工期和施工费用。另外,原来的深基坑支护结构的设计理论、设计原则、运算公式、施工工艺等,已不符合深基坑开挖与支护结构的实际情况,导致一些基坑工程出现事故,造成巨大的损失。因此,深基坑支护的安全问题工程技术人员应予以高度重视。

2 目前深基坑支护存在的问题

2.1 支护结构设计中土体的物理力学参数选择不当

深基坑支护结构所承担的土压力大小直接影响其安全度,但由于地质情况多变且十分复杂,要精确地计算土压力目前还十分困难,至今仍在采用库伦公式或朗肯公式。关于土体物理参数的选择是一个非常复杂的问题,尤其是在深基坑开挖后,含水率、内摩擦角和粘聚力三个参数是可变值,很难准确计算出支护结构的实际受力。

在深基坑支护结构设计中,如果对地基土体的物理力学参数取值不准,将对设计的结果产生很大影响。土力学试验数据表明:内磨擦角值相差5°,其产生的主动土压力不同;原土体的内凝聚力与开挖后土体的内凝聚力,则差别更大。施工工艺和支护结构形式不同,对土体的物理力学参数的选择也有很大影响。

2.2 基坑土体的取样具有不完全性

在深基坑支护结构设计之前,必须对地基土层进行取样分析,以取得土体比较合理的物理力学指标,为支护结构的设计提拱可靠的依据。一般在深基坑开挖区域内,按国家规范的要求进行钻探取样。为减少勘探的工作量和降低工程造价,不可能钻孔过多。因此,所取得的土样具有一定的随机性和不完全性。但是,地质构造是极其复杂、多变的、取得的`土样不可能全面反映土层的真实性。因此,支护结构的设计也就不一定完全符合实际的地质情况。

2.3 基坑开挖存在的空间效应考虑不周

深基坑开挖中大量的实测资料表明:基坑周边向基坑内发生的水平位移是中间大两边小。深基坑边坡的失稳,常常以长边的居中位置发生。这足以说时深基坑开挖是一个空间问题。传统的深基坑支护结构的设计是按平面应变问题处理的。对一些细长条基坑来讲,这种平面应变假设是比较符合实际的,而对近似方形或长方形深基坑则差别比较大。所以,在未进行空间问题处理前而按平面应变假设设计时,支护结构要适当进行调整,以适应开挖空间效应的要求。

2.4 支护结构设计计算与实际受力不符

目前,深基坑支护结构的设计计算仍基于极限平衡理论,但支护结构的实际受力并不那么简单。工程实践证明,有的支护结构按极限平衡理论设计计算的安全系数,从理论上讲是绝对安全的,但有时却发生破坏;有的支护结构安全系数虽然比较小,甚至达不到规范的要求,但在实际工程中却满足要求。

极限平衡理论是深基坑支护结构的一种静态设计,而实际上开挖后的土体是一种动态平衡状态,也是一个土体逐渐松弛的过程,随着时间的增长,土体强度逐渐下降,并产生一定的变形。所以,在设计中必须充分考虑到这一点。

3 深基坑支护方案设计及施工中的注意事项

3.1 彻底转变传统的设计理念

近十几年来,我国在深基坑支护技术上已经积累很多实践经验,收集了施工过程中的一些技术数据,已初步摸索出岩土变化支护结构实际受力的规律,为建立深基坑支护结构设计的新理论和新方法打下了良好的基础。但是,对于深基坑支护结构的设计,国内外至今尚没有一种精确的计算方法,多数是处于摸索和探讨阶段,我国也没有统一的支护结构设计规范。土压力分布还按库伦或朗肯理论确定,支护桩仍用“等值梁法”进行计算。其计算结果与深基坑支护结构的实际受力悬殊较大,既不安全也不经济。由此可见,深基坑支护结构的设计不应再采用传统的“结构荷载法”,而应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系。这是设计人员需要加强科研攻关的方向。

3.2 建立变形控制的新的工程设计方法

目前,设计人员用的极限平衡原理是一种简便实用的常用设计方法,其计算结果具重要的参考价值。但是,将这种设计方法用于深基坑支护结构,只能单纯满足支护结构的强度要求,而不能保证支护结构的刚度。众多工程事故就是因为支护结构产生过大的变形而造成的,由此可见,评价一个支护结构的设计方案优劣,不仅要看其是否满足强度的要求,而且还要看其是否产生环境问题,关键在于其变形大小。鉴于上述实际,在建立新的变形控制设计法时,应着重研究支护结构变形控制的标准、空间效应转化为平面应变和地面超载的确定及其对支护结构的影响等问题。

3.3 大力开展支护结构的试验研究

正确的理论必须建立在大量试验研究的基础上。但是,在深基坑支护结构方面,我国至今尚未进行科学系统的试验研究。一些支护结构工程成功了,也讲不出具体功之处;一些支护结构工程失败了,也说不清失败的真实原因。在支护工程施工的过程中积累的技术资料很丰富,但缺少科学的测试数据,无法进行科学分析,不能上升到理论的高度,这是一个很大的缺陷。

开展支护结构的试验研究(包括实验室模拟试验和工程现场试验),虽然要耗费部分资金,但由于深基坑支护工程投资巨大,如经过科学试验再进行设计时,肯定会节省可观的经费。因此,工程现场试验是非常必要的。通过工程实践积累大量的测试数据,可对同类工程的成功打好基础,为理论研究和建立新的计算方法提供可靠的第一手资料。

3.4 探索新型支护结构的计算方法

高层建筑的飞速发展给深基坑支护结构带来一场技术革命。在钢板桩、钢筋混凝土板桩、钻孔灌注桩挡墙、地下连续墙等支护结构成功应用后,双排桩、土钉、组合拱帷幕、旋喷土锚、预应力钢筋混凝土多孔板等新的支护结构型式也相继问世。但是,这些支护结构型式的计算模型如何建立、计算简图怎样选取、设计方法如何趋于科学,仍是当前新型支护结构设计中急需解决的问题。

目前,深基坑支护结构正在向着综合性方向发展,即受力结构与水结构相结合、临时支护结构与永久支护结构相结合、基坑开挖方式与支护结构型式相结合。这几种结合必然使支护结构受力复杂。所以,建立新型支护结构的计算方法,已成为深基坑工程技术的当务之急。

4 结束语

建筑基坑的开挖与支护结构是一个系统工程,涉及工程地质、水文地质、工程结构、建筑材料、施工工艺和施工管理等多方面。它是集土力学、水力学、材料才学和结构力学等于一体的综合性学科。支护结构又是由若干具有独立功能的体系组成的整体。正因如此,无论是结构设计还是施工组织都应当从整体功能出发,将各组成部分协调好,才能确保它的安全可靠、经济合理。

篇5:深基坑支护锚杆工程监理质量控制论文

深基坑支护锚杆工程监理质量控制论文

摘 要:以工程实例为研究对象,就深基坑锚杆支护工程监理重点进行了详细的介绍,对该工程的监理重点、目标情况、监理模式、措施及建设时要予以重视的问题等进行了全面的阐述。

关键词:深基坑;锚杆支护;施工监理;围护

1 、工程实例

该工程建筑总面积 23万m2。地下两层,每层面积 1.8万m2,基坑深 16m,基坑 周边长 约550m。场地位于城 市主干道南侧,其东、南、西侧有建筑,场地放坡空间有限。基坑边坡岩土 自上而下基本为填土层、淤泥质粘土、残积土、全风化岩、强风化岩、中风化岩。稳定水位埋深 1.35m-2.45m。根据岩土工程勘察资料,经计算并结合类似工程经验,施工单位选用了喷锚网支护方式。锚杆 白上而下共 7排,孔径 110mm。第 2、3、4层锚杆采用预应力锚索 2①s15.24,其余为直径为 25螺纹钢。锚杆用压浆袋封孔压力注浆。锚杆尾部设横 向一加强筋,而层挂钢筋网为 6.5×250,喷射混凝土 C20平均厚 l0cm。对直立 开挖部分,开挖前打设水泥搅拌桩,桩底打至风化岩。

2、监理控制要点

2.1 重视地质勘察工作

对监理工程师来说,其一个工作职责就是全面了解工程报告,从而掌握地质情况及基坑所处位置的土质、地理位置等特点,探讨也许会出造成边坡滑坡的原因,从而掌握对边坡稳定性起到重要作用的土质、地层、地段等各类因素。因为地质勘察报告可能相对粗泛,也许和实际不完全一样,在进行基坑挖掘时,对监理工程师来说,需时常实地察看,如果和报告相关较大,必须第一时间通告施工方,由施工方告知勘察方及设计方,从而决定是不是要对方案进行调整。

2.2 设计方案必须经过技术论证

通常来说,设计方的职责包括建筑设计部分。而支护工程通常当作施工过程中不可或缺的构成单元涵盖于施工图中,其通常拥有相应资质的部门自行设计完成,或者由施工方授权中坚力量的单位完成设计。因为对基坑进行支护工作十分复杂,难度较大,若设计工作者经验欠缺,极有可能出现设计考虑不全面。所以,施工方需聘请具有多年工作在历的专家来完成设计工作,并对施工方案可行性进行评审,从而进一步提高基坑支护安全性,避免出现事故。

2.3 要想保证基坑支护质量,则一个重要的手段是对深基坑锚杆进行支护,关键是严格过程控制

如果质量不好,事后进行纠正难度大,补救十分困难。所以,对监理工程师来说,一定把好关口,保证建设质量安全可靠。

(1)严格按照设计方案进行施工建设。在施工时,相关工作者必须对地质情况、图纸及基坑环境等进行全面了解与掌握,且保证降水系统能够良好地运行,一些施工过程中用到的设备必须能够良好运转。进行施工时,施工方禁止随意变更锚杆所在的位置、长度、数量等。如果要对方案进行变更,一定要经过专家评审方可。

(2)对水准点、坐标控制点进行校核,确保其正确无误,且做好相应的保护措施。对施工方纵向及横向施工放线有没有出现错误进行审查,基坑施工过程中,要审查基坑挖掘的尺寸、水平标准高度和边坡的高度,并动态掌握其变化情况。

(3)严格落实见证取样制度,牢牢把信进料关口。施工过程中进场的水泥、砂石等原料,一定要根据有关要求严格报检,确保“两证一单”资料齐全,同时做到见证取样并检验处理。

(4)验收隐蔽工程。施工时,对监理工程师来说,要对锚杆安装的位置、钻孔的大小、深钱、角度、注入砂浆的配比、压力等各个因素作出全面的检查,根据相关要求,预留出混凝土及水泥浆的试验样块,一旁监督的监理,要进行锚杆抗拔力检查。

如果通过机械进行基坑挖掘,要留出0.3到0.4m,人工进行坡面整理,从而最大程度上避免边坡超范围挖掘,防止扰动边坡土体,从而确保边坡面平整,边坡角度达到设计标准。

对钢筋网来说,其直径与间距一定要达到设计标准,在绑扎过程中,要根据挖掘进度同时作业,搭接的长度要达到设计标准,通常等于网格边长。

3、锚杆工程的监理控制要点及目标值

(1)锚杆长度。允许误差:±30mm;检查方法:钢尺量。

(2)锚杆锁定力。控制值:设计要求:检查方法:现场实测。

(3)锚杆位置。允许误差:±100arm;检查方法:钢尺量。

(4)钻孔倾斜。允许误差:±l0:检查方法:测钻机倾角。

(5)浆体强度。控制值:设计要求,检查方法:试样送检。

(6)注浆量。控制值:大于理论计算浆量;检查方法:检查计量数据。

(7)测量设备在使用前应进行标定。

4 、锚杆工程的监理工作方法及措施

4.1 施工准备阶段的预控方法、措施

(1)检查分包单位的资格报审表和有关资质的资料。

(2)熟悉有关地质勘探资料。应清楚土层的分布及其物理力学特性,地下水对锚杆腐蚀的可能性和应采取的防腐措施,地下管线和构筑物的情况。

(3)参与审核设计图纸及技术交底,了解锚杆的承载力,锚杆杆体的截面和长度、锚杆布间(包括问距、排距、倾角等),锚杆构造要求及锚头与锚固体的设计。

(4)审核施工单位提供的施工组织设计,包括施工顺序、工艺流程、保证供排水和动力的措施,进场机械的正常使用和保养维修制度、劳动组织和施工进度计划。根据土层情况和锚杆孔参数(深度、直径等)分析判断施工单位选取的钻孔机具及钻进方式是胥合理,采用的锚具是否符合技术要求。

(5)对进场的.原材料,检查其出厂合格证和有效的检测报告,并按规定进行见证抽样送检。对进场的张拉设备进行标定。

(6)锚杆正式施工前,要求施工单位选取一定数量的锚杆进行钻孔、注浆、张拉及锁定的试验性作业,检验设计的合理性及施工工艺及设备的适应性。

4.2 施工阶段的监理方法、措施

(1)钻孔锚杆工程分钻孔、注浆及张拉三个阶段,监理人员在注浆和张拉阶段应实行旁站监理。

①钻孔前,应复核锚孔的位置、水平及垂直方向孔距:

②钻孔过程中,应检查钻孔角度;

③钻孔完成后,应督促施工单位清孔,清除孔底沉渣,并检查钻孔深度是否符合要求;

④对于嵌岩锚杆,应会同设计、勘探、施工单位对基岩进行验收。钻孔完成后应检查入岩深度是否符合设计要求。

(2)注浆:

①检查锚杆表面是否有油污及锈膜:

②检查锚杆的构造和制作质量是否符合设计要求;

③杆体安放时,应避免杆体扭转、弯折和部件松脱,杆体插入孔内的深度不应小于锚板成孔深度的98%,亦不得超深;

④杆体安放时,若注浆管被拔出长度超过 500mm时,应将杆体拔出,修整后重新安放;

⑤应根据设计要求检查注浆材料的灰砂 比和水灰 比。所用水不得使用污水;

⑥浆液应搅拌均匀,随搅随用,并应在初凝前用完;

⑦应检查注浆泵的工作压力是否符合设计要求 ;

⑧注浆过程 巾,若发现注浆量大大减少或注浆管爆裂时,应将杆体及注浆管拔出,更换注浆管,再下放杆体,若耽搁时间超过浆液初凝时间,应重新清孔后再下放杆体,再新注浆:

⑨应督促施工单位按规定留置试压件。

(3)张拉:

①锚固体及台座混凝土强度大于设计强度70%后,才可进行 张拉 ;

② 台座的承压面应平整,并 与锚杆 的轴线方 向垂直:

③锚杆 的张拉应力应符合设计要求:

④锚杆的锁定值应符合设计预应力值;

⑤锚杆锁定后若经监测发现明显的预应力损失,应要求施工单位进行补偿张拉。

锚杆钻孔应按设计倾角和孔深进行。当钻孔遇到障碍物无法钻进时,允许改变钻孔方向:当土层为软土时允许加大倾角,使锚杆打入有利的土层中:当钻孔深度不能满足要求时,应在该孔的左右或下方按锚杆抗拔力等同的原则补强。

钻孔结束后,应将孔 内松土、泥浆等清 除干净,方可送入锚杆。下锚杆时,应把注浆管、锚杆和止浆袋一起放入孔内。注浆要严格控制配合比,并根据注浆情况多次注浆,以保证浆液充满孔壁,使锚杆具有较高的抗拔力。锚杆孔内锚固体强度达到设计强度的 70%以上且不小于 3天,方可开挖下一 层土方。

喷射混凝 七要按设计配合比搅拌均匀,垂直作业面尽量从底部逐步向上部施喷,混凝土厚度要符合设计要求,每 500m。喷射面留置试块一组,每组不小于 3块。

5 、深基坑锚杆支护工程施工应注意问题

基坑支护单位要与挖土单位紧密配合。遵循时空效应原则,土方开挖的顺序、方法必须与设计工况相一致,并遵循“开槽支撑,先撑后挖,分层开挖,严禁超挖”的原则,减少开挖过程 中土体的扰动范 围,缩短基坑开挖卸荷后无支撑的暴露时间,对称开挖,均衡开挖,合理利用土体自身在开挖过程中控制位移的能力。基坑开挖过程中,应采取措施防止碰撞支护结构、工程桩或挠动基底原状土。发生异常情况时,应立即停止挖土,并应立即查清原因和采取措施,方可继续挖土。基坑开挖过程中需要放炮时,监理工程师要审查施工单位 的专项爆破施工资质,审查经专家评审的爆破施工方案,严格按方案控制装药量和每次放炮数量,防止爆破震动、飞石和冲击波破坏边坡的稳定性。

基坑开挖完成后,应提醒建设单位尽快组织勘察、设计、质监、监理、施工等部门进行验槽,及早开始地下结构工程的施工,严禁基坑长时间暴露。基坑回填前,支护层不能破坏,特别是坡脚部分。

注意地下水或水患的影响。在基坑开挖过程中,土层滞水、砂土中的微承压水、裂隙水、承压水、管道漏水、地面排水、雨水等处理不当,都会给边坡支护和周围建筑、管线带来危害。

在选择地下水的处理方式时,要根据工程地质和水文条件及周围环境,决定采取降水还是防渗措施,以免引起地面沉 降,给周边建筑及管线造成破坏。基坑边界周围地面应设排水沟,且应避免漏水、渗水进入坑内;放坡开挖时,应对坡顶、坡面、坡脚采取降排水措施。地下管道漏水,极易造成边坡失稳。在基坑开挖过程中,监理工程师如发现地下管道有漏水现象,应要求施工单位及时采取措施,如使地下管道改道,对漏水管道进行修补、防渗、将漏水及时导出等,防止边坡含水量过大引起滑波。

推行信息化施工。信息化施工包括预测、信息采集与反馈、控制与决策等方面的内容 由于深基坑开挖过程中,边坡稳定存在很多潜在的危险和破坏的突然性,地下工程受各种水文、地质、雨水等复杂条件的影响,特别在基坑旁有基础埋置较浅的建筑,或有重要的地下电缆和市政管线,这些很难从理论上预估出现的问题。因此,必须加强观测,进行信息化施工,根据土层位移的时空效应,及时掌握土体变形特性、边坡的稳定状态和支护效果,发现异常情况及时采取措施,预防边坡失稳和周围建筑沉降等事故发生。

基坑工程监测项目包括:支护结构水平位移;周围建筑物、地下管线变形;地下水位;桩、墙内力:锚杆拉力;支撑轴力;立柱变形;土体分层竖向位移;支护结构界面上侧向压力等。位移观测基准点数量不应少于两点,且应设在影响范围以外。

监测项目在基坑开挖前应测得初始值,且不应少于两次。各项监测的时间问隔可根据施工进程确定。当变形超过有关标准或监测结果变化速率较大时,应加密观测次数;当有事故征兆时,应连续监测。基坑开挖监测过程中,检测单位应根据设计要求提交阶段性监测结果报告,工程结束时应提交完整的监测报告。

6、结语

基坑支护是近年来我 国岩土工程的难点之一,而锚杆支护又是深基坑支护工程常用的结构类型,是一项实践性很强的技术。为 了预防和遏制工程事故的发生,应对深基坑锚杆支护工程的勘察、设计、施工、监理与监测提出明确的技术要求,建立设计、施工、监测单位的资质认证制度,使深基坑锚杆工程逐步走上科学、规范的健康发展的轨道。可以预见,随着城市建设 的不断发展,深基坑锚杆支护技术必将 日臻完善,深基坑锚杆支护工程的技术管理也会迈上新台阶。

篇6:试论工程深基坑支护设计与施工协调管理工学论文

目前的建筑工程深基坑支护设计和施工还存在着很多不够完善的地方,现针对建筑工程深基坑支护设计和施工现状,进而提出了深基坑支护工程中存在的诸多问题,在设计上对基坑支护设计单位、设计方案的提交、坡项堆载、结构施工临建的布置等的要求进行了明确说明;在施工上对施工方案编制与下发、施工过程控制、地下水控制等进行了详细阐述。

1 深基坑支护设计和施工现状

目前的建筑施工,其中的深基坑支护因其专业性较强,一般都分包给了岩土专业施工公司,比较大的公司一般是当地的勘察设计施工单位,另外,还有一些规模和实力较强的专业公司,当前市场上,个人岩土公司也有一些。从设计和施工资质上看:比较大的岩土专业施工公司既有施工资质又有设计资质;而一些小的岩土专业施工公司只有施工资质,而没有设计资质,这种情况在当前的岩土工程施工中为数较多。

最近两年,一些业主为了提前开工等多种因素,在招标时改变常规,对地下岩土工程部分在结构主体招标前先进行招标,随之而来出现了一些新现象:许多大的建筑总承包单位为了抢占市场,纷纷参与了投标,一些大的`建筑总承包单位进入了岩土工程施工。然而,不论是业主还是监理单位,他们都忽视了建筑总承包单位一般都没有岩土工程设计资质的问题,这给将来的施工造成了很多隐患。从承包模式看:基坑支护施工一般都实行分包,有些是业主直接将基坑工程分包给了专业公司,然后纳入总承包单位管理;而另一种模式是业主将基坑任务交给了总承包单位,而由总承包单位进行分包。前一种模式因业主将任务直接分包,故在总包单位管理时易出现管理难的问题,而后一种模式容易出现工程质量问题。

从深基坑工程特点看:深基坑开挖深度大,很多深基坑紧邻其它建筑物(或构筑物),施工难度较大,除了合理设计外,必须加强施工管理,确保严格按设计和相关规范施工,必须对基坑边坡和周围建筑物(或构筑物)加强监测,实现信息化施工。

2 施工中遇到的问题

2.1 基坑边坡坍塌。

这种情况一般发生在基坑施工阶段和基坑支护施工刚结束不久。在北京朝阳区洼里某一工地,基坑支护刚完工不到两天,边坡从上至下整体坍塌,长度达五十余米。究其原因,支护施工单位没有经过合理的设计,也没有严格按设计施工,从坍塌的坡面看,尽管是土钉支护,但是没有按土钉支护规范进行。大多数土钉没有注浆,只是打了一些孔把钢筋插进去;有些土钉虽然注了浆,但是孔内浆体没有注满;有些土钉孔位置根本没有打孔,只是将土钉杆体直接击入土体。

2.2 边坡水平位移较大。

一些基坑边坡水平位移较大,达到 4cm以上,并且经监测,水平位移还在继续加大。面对此种情况,结构主体施工单位停止了地下主体施工,业主不得不立即召集基坑支护设计、施工单位和专家对基坑重新进行稳定性分析,并就出现的问题提出处理措施。

2.3 附近建筑物变形。

在城市建设中,很多基坑紧邻建筑物,处理稍有不当,附近建筑物就极易变形。一般来说,建筑物变形都是其地基沉降引起的。建筑物出现较大变形后,不仅危及楼上的居民或工作人员的安全,而且也对在施的工程造成威胁,使得工程难以继续进行下去。

3 深基坑支护设计和施工的几点建议

针对深基坑支护施工中出现的一些情况,为了后续的结构主体施工能够顺利、安全、有序地进行,特对深基坑支护设计和施工提出如下几点建议。

3.1 明确基坑支护设计单位。

深基坑工程越来越多,而深基坑坍塌的事故也频频发生,为防止深基坑工程事故,地方主管部门出台了许多有关深基坑的强制性文件。所有这些都说明了深基坑工程事故的严重性和做好深基坑工程的重要性。在包括深基坑支护在内的岩土工程专业施工单位,同时一般也是设计单位。只有明确了深基坑支护设计单位,提交了深基坑支护设计单位资质,这在将来的施工中如出现问题时才能容易找到责任单位和责任人,可追溯性强。

3.2 投标和施工时提交基坑支护设计。

深基坑支护施工的依据是深基坑支护设计,故加强深基坑工程设计的审核和监督非常必要。无论在基坑支护投标时还是在基坑支护施工之前,都应单独提交基坑支护设计,设计封面和设计图上均应有设计人、审核人和审批人签字。这样,在基坑支护施工中如出现问题需做设计变更时,才能够很快找到设计人,也便于快速解决问题,同时也便于追究责任。

4.3 专项施工方案的编制与下发。

在基坑支护施工时,应编制专项施工方案。考虑到上报、审阅与返回周期,专项施工方案应在施工前几天编制,并及时上报监理。监理应抓紧批复,在批复后及时返回施工单位,以便施工单位能够及时准确下发到各相关部门和人员。施工单位在接到正式批复的施工方案前不得进行施工。在当前的基坑支护施工中,施工方案未批复前就开始施工的情况时有发生,这作为深基坑支护规范化施工是应当避免的。

4.4 施工过程控制。

深基坑支护施工中,应加强过程控制。施工中必须严格按照基坑支护设计、基坑支护施工组织设计、技术交底和相关规范等进行施工。施工中如出现异常情况,应由现场技术负责人根据情况的性质和大小,向基坑支护设计人汇报,设计人应及时根据现场实际情况进行设计变更,将问题消灭在萌芽中。

4 结论

对于深基坑支护设计和施工必须加强管理,要做好深基坑支护设计和施工,需从以下几方面着手解决。

4.1 设计应全面考虑深基坑支护的设计依据和条件,这是做好深基坑支护工程的前提条件。

4.2 深基坑支护应重视设计,加强对设计的全面管理;投标时应单独提供基坑支护设计。

4.3 基坑支护施工是工程得以安全、顺利进行的保证,应加强施工过程控制。

4.4 “4水”是深基坑支护的大敌,应重视对地下水的控制。同时,作为宝贵的地下水资源,应限制盲目、过度的抽降。

4.5 深基坑支护设计和施工管理目前还没有得到人们的充分重视,做好深基坑支护设计和施丁管理对减少甚至杜绝基坑工程事故、规范建筑施工必将起到积极的推动作用。

相关专题 基坑工学